Chapter 12 Extension (Contents added to the existing section)

Service Integration Bus and High Availability Manager

Configure Highly Available Messaging Engine with Workload Sharing – Contents added are highlighted in Green

As you saw in an earlier task, the default SIBus member configuration doesn’t support workload sharing because only one messaging engine is active to handle the traffic for that member. For many applications, one message engine will be enough to handle the messaging load. One reason to use a single messaging engine is to more easily maintain message sequence. For scenarios requiring high-volume message processing, you can change the default configuration by adding additional messaging engines to the cluster to support workload sharing. Figure 12-9 shows this architecture.

Figure 12-9: Highly available messaging engine with workload-sharing architecture
To set up this environment, complete the following steps to create a data store to persist the messages of a messaging engine on the second cluster member.

1. Create a second database to persist the messages. In the example, we create a second database (SIBDB2) on DB2.
2. Create the data source jdbc/sibus2, and verify the data-source database connection.
3. Navigate to Service integration|Buses|yourbus|Bus members|yourmember, and click the Add messaging engine button. Figure 12-10 shows this panel for the HorizontalCluster member.

![Figure 12-10: Adding a messaging engine](image)

4. On the resulting panel (Figure 12-11), enter the name of the second data source and the J2C authentication alias you created for access to the SIBus database. Leave all other values at the defaults. Make sure the Create tables check box is selected. Click OK, and save the configuration.
5. Restart the cluster if it’s practical to do so. Otherwise, start the new messaging engine on the cluster by navigating to Service integration|Buses|yourbus|Messaging engines, selecting the new message engine’s check box, and clicking Start.
6. Use the instructions you followed earlier to verify the configuration and failover.
As shown in the screenshot below the second messaging engine will be created using the naming convention of ClusterName.XXX-BusName (HorizontalCluster.001-NOYBBus in our sample configuration). Where XXX represents the numeric value in the increasing order (000, 001 etc.) representing the number of the messaging engine in the cluster. You will be using the names of these messaging engines while configuring the match criteria for the new high availability policies you will create later in this section. Navigate to Service Integration|Buses|yourbus|Messaging engines to look at the names of the messaging engines in your configuration.

![Naming convention of messaging engines in a cluster environment](image-url)
After adding and starting the additional messaging engine using the instructions above with the default configuration, you will find that both the active messaging engines (ME and ME2) are instantiated on the same server depending on which cluster member starts first (server1 or server2) as shown in the diagram below. You can verify this by looking at the log files (SystemOut.log for each cluster member) mentioned in the earlier section. Our intention is to distribute the active messaging engines (MEs) across both of the cluster members to attain a true HA/WLM environment for messaging engines. Even though the diagram shown below shows that both active MEs instantiated on server1, they might appear on server2, if server2 is the server that starts first.

![Diagram of Horizontal Cluster]

Figure 12-11b: Highly available messaging engine with the default configuration

In order to distribute the active messaging engines across the cluster members as described in Figure 12-9, you need to create two new high availability policies related to the messaging engines. Refer to the High Availability Manager section later in this chapter for more information about high availability policies. Perform the following tasks to create the new policies:

1. Create the first policy to start the first messaging engine (ME) always on the first cluster member.
 a. Navigate to **Servers|Core groups|Core group settings|DefaultCoreGroup|Policies** and click **New** to create a new policy.
b. Select One of N Policy and click on Next.
c. Name the policy and click on Apply. We used ME_ON_MEMBER_1 as the name in our sample configuration. You will see the options under the Additional properties section will be enabled after clicking on Apply.
 • It’s usually a good idea to select the checkboxes for Fail back and Preferred Servers only as other servers are added to the core group there are likely to be servers where you don’t want the MEs to run. Refer to the High Availability Manager section later in this chapter for more information about these options.

d. Select the Match criteria link and click on New on the resulting screen.
e. On the criterion configuration screen enter the Name as type and value as WSAF_SIB. Click on OK and save the configuration.
Figure 12-11d1: Specifying the first match criteria for the first policy

f. Click on New again to create another match criterion under this policy.
g. On the criterion configuration screen enter the Name as WSAF_SIB_MESSAGING_ENGINE and value as name of the first messaging engine in your configuration. In our sample configuration it was HorizontalCluster:000-NOYBBus as shown in the screenshot below. Click on OK and save the configuration.
After configuring the two match criterions, Match criterion page should look similar to the screenshot given below.

h. Select the **Preferred Servers** link under the **Additional properties** section for this policy (ME_ON_MEMBER-1).
i. Select the **cluster member one** (server1) and click on **Add >>** to move this cluster member as the first preferred server.
j. Select the **cluster member two** (server2) and click on **Add >>** to move this cluster member as the second preferred server. This means this messaging
engine will be started on this server only if the first cluster member is not started or has failed.
k. Click on OK and save the configuration

![General Properties](image1)

Figure 12-11e: Specifying the preferred servers and their order for the first policy

2. Create the second policy to start the second messaging engine (ME2) always on the second cluster member using the same instructions given above with the following variations:

 a. Provide a different policy name. We used ME_ON_MEMBER_2 as a name for the second policy.
 c. Create the first match criterion exactly like before (Name as type and Value as WSAF_SIB).

 b. For the second **Match criteria** enter the **Name** as WSAF_SIB_MESSAGING_ENGINE and **value** as the second messaging engine in your configuration. In our sample configuration second messaging engine was HorizontalCluster.001-N0YBBus as shown in the screenshot below.

![General Properties](image2)

Figure 12-11f: Specifying the second match criteria for the second policy

c. For the **Preferred Servers**, **first** select the second cluster member (server2) and then the second cluster member (server1) in the order specified as shown in the screenshot below.
d. Click on **OK** and **save** the configuration.

3. Restart the cluster and verify that the messaging engines (ME1 and ME2) will be started on both the cluster members (server1 and server2) as configured looking at the log files using the instructions provided earlier in this chapter.
